Magnetic assembly of microfluidic spun alginate microfibers for fabricating three-dimensional cell-laden hydrogel constructs
نویسندگان
چکیده
microchannels. Interestingly, this impulse can achieve to temporarily cease the spinning process. Moreover, an optimized magnetic assembly is achieved by considering both the assembling area on a ring magnet and the MNPs concentration in microfibers. After the test of cell survival, a high cell viability of 97.2 % can be confirmed in assembled structures, which indicates that our method allows a biocompatible assembly of cell-laden hydrogels to build macroscopic 3D cellular structures similar to tissues observed in vivo.
منابع مشابه
Microfluidic direct writer with integrated declogging mechanism for fabricating cell-laden hydrogel constructs.
Cell distribution and nutrient supply in 3D cell-laden hydrogel scaffolds are critical and should mimic the in vivo cellular environment, but been difficult to control with conventional fabrication methods. Here, we present a microfluidic direct writer (MFDW) to construct 3D cell-laden hydrogel structures with openings permitting media exchange. The MFDW comprises a monolithic microfluidic head...
متن کاملAn easy-to-use and versatile method for building cell-laden microfibres
Fibre-shaped materials are useful for creating different functional three-dimensional (3D) structures that could mimic complex tissues. Several methods (e.g. extrusion, laminar flow or electrospinning) have been proposed for building hydrogel microfibres, with distinctive cell types and with different degrees of complexity. However, these methods require numerous protocol adaptations in order t...
متن کاملContinuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip.
Engineering three-dimensional (3D) scaffolds with in vivo like architecture and function has shown great potential for tissue regeneration. Here we developed a facile microfluidic-based strategy for the continuous fabrication of cell-laden microfibers with hierarchically organized architecture. We show that photolithographically fabricated microfluidic devices offer a simple and reliable way to...
متن کاملBioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cel...
متن کاملThree-Dimensional Calcium Alginate Hydrogel Assembly via TiOPc-Based Light-Induced Controllable Electrodeposition
Artificial reconstruction of three-dimensional (3D) hydrogel microstructures would greatly contribute to tissue assembly in vitro, and has been widely applied in tissue engineering and drug screening. Recent technological advances in the assembly of functional hydrogel microstructures such as microfluidic, 3D bioprinting, and micromold-based 3D hydrogel fabrication methods have enabled the form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015